
Minimum Entropy Principle Guided Graph Neural Networks

Zhenyu Yang
Ge Zhang
Jia Wu

Jian Yang
Quan Z. Sheng

Macquarie University

{zhenyu.yang3,ge.zhang5}@hdr.mq.edu.au

{jia.wu,jian.yang,michael.sheng}@mq.edu.au

Hao Peng
Angsheng Li

Beihang University

{penghao,angsheng}@buaa.edu.cn

Shan Xue
University Of Wollongong

sxue@uow.edu.au

Jianlin Su
Shenzhen Zhuiyi Technology Co., Ltd.

bojonesu@wezhuiyi.com

ABSTRACT

Graph neural networks (GNNs) are now the mainstreammethod for

mining graph-structured data and learning low-dimensional node-

and graph-level embeddings to serve downstream tasks. However,

limited by the bottleneck of interpretability that deep neural net-

works present, existing GNNs have ignored the issue of estimating

the appropriate number of dimensions for the embeddings. Hence,

we propose a novel framework called Minimum Graph Entropy

principle-guidedDimension Estimation, i.e. MGEDE, that learns the

appropriate embedding dimensions for both node and graph repre-

sentations. In terms of node-level estimation, a minimum entropy

function that counts both structure and attribute entropy, appraises

the appropriate number of dimensions. In terms of graph-level esti-

mation, each graph is assigned a customized embedding dimension

from a candidate set based on the number of dimensions estimated

for the node-level embeddings. Comprehensive experiments with

node and graph classification tasks and nine benchmark datasets

verify the effectiveness and generalizability of MGEDE.

CCS CONCEPTS

• Computing methodologies → Artificial intelligence; • In-

formation systems→ Data mining.

KEYWORDS

Dimension estimation; graph neural network; graph entropy; node

embedding; graph embedding

ACM Reference Format:

Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z. Sheng, Hao Peng,

Angsheng Li, Shan Xue, and Jianlin Su. 2023. Minimum Entropy Principle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9407-9/23/02. . . $15.00
https://doi.org/10.1145/3539597.3570467

Guided Graph Neural Networks. In Proceedings of the Sixteenth ACM Inter-

national Conference on Web Search and Data Mining (WSDM ’23), February

27-March 3, 2023, Singapore, Singapore. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3539597.3570467

1 INTRODUCTION

GNNs are currently the most popular graph mining methods for

learning low-dimensional node or graph embeddings to serve down-

stream machine learning tasks, such as classification [14, 17, 44],

clustering [4, 36, 51], regression [12, 33]. The relevant theories

have already been applied to a range of real-world applications

[16, 43, 49]. Here, the general rule is that the dimensionality of

the embeddings affects the quality of the encoded semantics and

the ultimate performance of the GNN. A small number of dimen-

sions will typically result in semantic loss, while a large number of

dimensions will lead to overfitting and issue with computational

inefficiency [23, 28, 47]. Hence, estimating the proper dimensional-

ity for the embeddings produced is a crucial part of harnessing the

power of a GNN yet one that has seldom been studied.

Estimating this critical parameter needs to be done manually in

current GNNs. But there are two challenges confronting one’s guess.

First, the current theoretical research [22, 26] on GNNs focuses on

how to embed structural and attribute information; the issue of

how to estimate an appropriate embedding dimension has not been

addressed. In practical terms, practitioners tend to select the proper

dimensionality through a manual enumeration search. But these

types of grid searches are time-consuming and computationally

expensive. The whole process is not very efficient and black-box

explainability issues can be confounding. Fig. 1 (A) illustrates the

problem. That said, a few studies on word embeddings have been

published where a suitable dimensionality is estimated via bias-,

variance-, or entropy-based metrics [10, 35, 41, 47]. Further, Luo

et al. [20] used the above metrics to produce embeddings with

suitable dimensionality for the nodes in a graph. The downside

of this technique is, however, that the process overlooks the rich

structural information in graphs. Second, different graphs will have

different proper embedding dimensions. Yet current graph-level

GNNs ignore this diversity and encode all graphs with a unified

embedding dimension (see Fig. 1 (B)). Hence, enabling GNNs to

114

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570467&domain=pdf&date_stamp=2023-02-27

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Zhenyu Yang et al.

Graph 1

Graph N

Grid Search-based
Heuristic Dimension Selection

Ac
cu

ra
cy

 o
f a

 G
N

N

Dimensions
10 20 30 40 50 60 70

Graph 2

(A) (B)

The real optimal
dimension

The optimal dimension
selected by grid search

A GNN for
Graph Classification

d

d-dimensional Graph
Representations of N Graphs

C
lassification R

esults

d d

Figure 1: In (A), a grid search method parses a GNN seven

times on each of seven embedding dimensions and then se-

lects the dimensionality with the highest accuracy. By con-

trast, MGEDE estimates the proper dimensionality without

needing to parse a GNN. In (B), a GNN generates embeddings

for 𝑁 graphs with a unified dimensionality of 𝑑 , which ig-

nores the differences between the graphs.

encode graphs with a range of different embedding dimensions for

graph-level tasks is the second challenge.

Motivated by the minimum entropy principle [11], which indi-

cates systems with minimum levels of uncertainty, we propose a

novel framework calledMinimum Graph Entropy Principle-guided

Dimension Estimation, or MGEDE for short. MGEDE is designed

to estimate the appropriate embedding dimensionalities for graph-

structured data and is highly applicable for GNNs. The framework

comprises both a node-level embedding dimension estimator (NDE)

and a graph-level embedding dimension estimator (GDE). The NDE

includes a minimum graph entropy function that simultaneously

models attribute and structure entropy. Multi-order topological

structures are captured to solve the appropriate number of dimen-

sions for all node embeddings. The uncertainty within the node

embeddings given different dimensionalities is approximately mea-

sured as attribute entropy based on the distributional hypothesis

[29]. Meanwhile, an encoding tree [15] that naturally forms a hi-

erarchical partition of the graph is used to calculate the structure

entropy. The GDE module includes a new assignment mechanism

that assigns each graph with a customized embedding dimension

from a candidate set. The candidate set is assembled from the node-

level embedding dimensions estimated by the NDE. Further, to

embed the graphs into diversely customized dimensional spaces,

we built a new training framework targeting graph-level embed-

dings from GNNs. For those who wish to reproduce our work,

MGEDE is available at https://github.com/MGEDE.

The main contributions of this article include:

• A novel embedding dimension estimation framework called

MGEDE, which is based on theoretical minimum entropy.

MGEDE estimates a suitable number of dimensions for node-

and graph-level embeddings, supporting GNNs to deliver

competitive performance with downstream tasks.

• A new structure entropy that measures the complexity of

a graph’s structure by capturing the graph’s multi-order

topological information.

• A new assignment mechanism that assigns each graph em-

bedding with a customized number of dimensions from a

candidate set.

• Extensive experiments demonstrate that MGEDE supports

GNNs and network embedding algorithms to deliver promis-

ing performance on node and graph classification tasks in

terms of effectiveness.

2 DEFINITIONS

Definition 1. (Graph). A graph𝐺 = (V, E) comprises a node set

V and an edge set E. For𝐺 , the adjacency matrix is A ∈ R𝑛×𝑛 , and
X ∈ R𝑛×𝑓 is the node attribute matrix. If ∀A𝑖, 𝑗 = 1, 𝐴 𝑗,𝑖 = 1, the

graph 𝐺 is an undirected graph, otherwise it is directed.

Definition 2. (MinimumEntropy).Given a variable𝑋 containing

𝑛 states, 𝑛 codewords are used to depict each state. In this case,

Shannon entropy [31] denotes the lower bound of the average

length of the codewords, which is𝐻 (𝑋) = −
∑𝑛
𝑖=1 𝑝𝑖𝑙𝑜𝑔𝑝𝑖 , where 𝑝𝑖

is the probability of the state occurrence. Hence, the graph entropy

equals the average length of the codewords used to describe the

graph. Minimizing the graph’s entropy is equivalent to seeking the

minimum length of a graph’s description. Correspondingly, a graph

that can be described by briefer and shorter codewords has less

uncertainty.

Definition 3. (Structure Entropy). Structure entropy is a metric

for measuring the complexity of a graph’s topology [15]. It repre-

sents the average length of the codewords, where each codeword

depicts a random walk on the graph. Under a specific encoding

scheme, structural entropy assigns a prefix codeword to each hier-

archy (e.g., community) in the graph to shorten the average length

of codewords. For example, the codeword of a random walk visiting

any node in the community can be shortened through the prefix

codeword of the community. Using prefix codewords, we only need

to encode the in-community nodes. The out-of-community nodes

can be ignored. The graph𝐺 = (V, E) is then encoded into a three-

layer tree T (as shown in 4© of Fig. 2), in which the root node 𝛾
denotes the whole graph, the tree nodes in the second layer denote

the communities of the graph, and nodes in each community com-

prise the third layer (i.e., the leaf nodes of the tree). The adjacency

matrix A represents the structure of 𝐺 , the structure entropy is

defined as:

𝐻𝑆 (A) = −
∑

𝛼∈T,𝛼≠𝛾

𝑔𝛼
𝑉𝑂𝐿 (𝛾)

𝑙𝑜𝑔
𝑉𝑂𝐿 (𝛼)
𝑉𝑂𝐿 (𝛼+)

, (1)

where 𝛼 is a non-root tree node, which has a father tree node 𝛼+.
𝑉𝑂𝐿 (𝛼) is the degree summation of all leaf nodes in the subtree

rooted at 𝛼 . For the root node 𝛾 , 𝑉𝑂𝐿 (𝛾) is the degree summation

of all leaf nodes in T . 𝑔𝛼 represents the number of edges in𝐺 which

only have one end node in the subtree rooted as 𝛼 . The probability

of a random walk visiting tree node 𝛼 is
𝑔𝛼

𝑉𝑂𝐿 (𝛾) , and -log
𝑉𝑂𝐿 (𝛼)
𝑉𝑂𝐿 (𝛼+)

is equal to the length of codeword that encodes 𝛼 in 𝛼+.

3 METHODOLOGY

MGEDE comprises two methods: NDE, which estimates the di-

mensionality of the node-level embeddings, and GDE, which es-

timates the dimensionality of the graph-level embeddings. NDE

can estimate appropriate dimensionalities for both undirected and

115

Minimum Entropy Principle Guided Graph Neural Networks WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Building Multi-order Adjacency Matrices Fusing Normalized
Multi-order Adjacency
Matrices

Structure
Entropy

Attribute Entropy

Normalizing

Minimum Entropy
Obtaining
Dimension d

Constructing Structure Encoding Tree

Root

Communities

Nodes

Fusion adjacency matrix

A Graph

1 2 3 4
1-order Neighborhood

1-order
2-order

1-order2-order3-order

Graph
Laplacian

Figure 2: The figure demonstrates how NDE estimates the appropriate number of dimensions for the node embedding 𝑑 and the

four steps involved in calculating our novel structure entropy.

directed graphs (see section 3.1 and section 3.2, respectively). The

GDE method estimates the candidate set of dimensionalities for

the graph-level embeddings and selects the best fit for each graph

(see section 3.3). A time complexity analyses of each method can

be found in section 3.4.

3.1 Node Representation Dimension Estimator

Motivated by the minimum entropy principle (see Definition 2),

NDE estimates the appropriate dimensionality of the node-level

embeddings by minimizing the graph entropy 𝐻𝐺 , which is defined

as:

𝐻𝐺 = 𝐻𝐴𝑡𝑡 + 𝐻𝑆 , (2)

where𝐻𝐴𝑡𝑡 denotes the attribute entropy and𝐻𝑆 denotes the struc-

ture entropy. Our explanation of how𝐻𝐺 is computed begins with a

detailed, explanation of how𝐻𝐴𝑡𝑡 and𝐻𝑆 are calculated. A function

over 𝑑 is then used to approximate 𝐻𝐺 . The appropriate dimension-

ality is then the value of 𝑑 that results in the minimum 𝐻𝐺 .

3.1.1 Attribute entropy. Treating all nodes in the graph as iso-

lated units, attribute entropy 𝐻𝐴𝑡𝑡 measures the amount of uncer-

tainty present in the collection of all node attributes. Originally,

there is an assumption that each node has a 𝑑-dimensional vector-

ized node embedding to encode the node attribute. Referring to

previous studies on computing the entropy of a set of word em-

beddings [35, 47], we denote a pair-wise inner product among the

assumed node embeddings as the basic unit for calculating 𝐻𝐴𝑡𝑡 ,
formally:

𝑃 (𝑧𝑖 , 𝑧 𝑗) =
𝑒<𝑧𝑖•𝑧 𝑗>∑
𝑖, 𝑗 𝑒

<𝑧𝑖•𝑧 𝑗> , (3)

where 𝑧𝑖 and 𝑧 𝑗 represent the embeddings of the nodes 𝑖 and 𝑗 ,
and < . • . > is the dot product. Denoted as 𝑆 =

∑
𝑖, 𝑗 𝑒

<𝑧𝑖•𝑧 𝑗> , the
attribute entropy is calculated as follows:

𝐻𝐴𝑡𝑡 = −
∑
𝑖, 𝑗

𝑃 (𝑧𝑖 , 𝑧 𝑗) log 𝑃 (𝑧𝑖 , 𝑧 𝑗) = −
∑
𝑖, 𝑗

𝑒<𝑧𝑖•𝑧 𝑗>

𝑆
log
𝑒<𝑧𝑖•𝑧 𝑗>

𝑆

= log 𝑆 −
1

𝑆

∑
𝑖, 𝑗

𝑒<𝑧𝑖•𝑧 𝑗> < 𝑧𝑖 • 𝑧 𝑗 > .

(4)

Using 𝑛 as the variable to represent the number of nodes in the

graph, 𝑆 and 𝐻𝐴𝑡𝑡 can be expressed as:

𝑆 =
∑
𝑖, 𝑗

𝑒<𝑧𝑖•𝑧 𝑗> = 𝑛2
1

𝑛2

∑
𝑖, 𝑗

𝑒<𝑧𝑖•𝑧 𝑗> ≈ 𝑛2𝐸𝑧𝑖 ,𝑧 𝑗 [𝑒
<𝑧𝑖•𝑧 𝑗>],

∑
𝑖, 𝑗

𝑒<𝑧𝑖•𝑧 𝑗> < 𝑧𝑖 • 𝑧 𝑗 >≈ 𝑛2𝐸𝑧𝑖 ,𝑧 𝑗 [𝑒
<𝑧𝑖•𝑧 𝑗> < 𝑧𝑖 • 𝑧 𝑗 >],

𝐻𝐴𝑡𝑡 ≈ log𝑛2 + log𝐸𝑧𝑖 ,𝑧 𝑗 [𝑒
<𝑧𝑖•𝑧 𝑗>] −

𝐸𝑧𝑖 ,𝑧 𝑗 [𝑒<𝑧𝑖•𝑧 𝑗> < 𝑧𝑖 • 𝑧 𝑗 >]
𝐸𝑧𝑖 ,𝑧 𝑗 [𝑒<𝑧𝑖•𝑧 𝑗>]

.

(5)

Yet, the value of < 𝑧𝑖 • 𝑧 𝑗 > can not be directly obtained since both

𝑧𝑖 and 𝑧 𝑗 are assumed embeddings not node attributes. To tackle

this issue, an approximate calculation is made. As an empirical

observation of the node embedding models in past experiments, we

find the absolute values of each element in the vectorized node em-

beddings are uniformly distributed. According to the distributional

hypothesis [29], we assume that each element in 𝑑-dimensional

vectorized node embeddings has an absolute value of one. That

is, in 𝑑-dimensional space, each node embedding maps to a vec-

tor that lies on the surface of a hyper-sphere with radius
√
𝑑 ∗ 1.

Subsequently, the approximate of < 𝑧𝑖 • 𝑧 𝑗 > can be shown as:

< 𝑧𝑖 • 𝑧 𝑗 >= |𝑧𝑖 | |𝑧 𝑗 | cos𝜃 =
√
𝑑
√
𝑑 cos𝜃 = 𝑑 cos𝜃, (6)

where 𝜃 is the angle between the vectors of 𝑧𝑖 and 𝑧 𝑗 . Combining

Eqs. (5) and (6) establishes a function to calculate the attribute

entropy with a dimension of 𝑑 and 𝜃 :

𝐻𝐴𝑡𝑡 ≈ log𝑛2 + log𝐸𝜃 [𝑒𝑑 cos𝜃] −
𝐸𝜃 [𝑒𝑑 cos𝜃𝑑 cos𝜃]
𝐸𝜃 [𝑒𝑑 cos𝜃]

. (7)

Referring to previous research [9, 34], the probability density

of the angle 𝜃 between two arbitrary vectors on the surface of a

hyper-sphere with radius
√
𝑑 in 𝑑-dimensional space is 𝑝𝑛 (𝜃) =

Γ
(
𝑑
2

)

Γ
(
𝑑−1
2

)√
𝜋
sin𝑑−2 𝜃 . Here, the 𝐻𝐴𝑡𝑡 is denoted as:

𝐻𝐴𝑡𝑡 ≈ log𝑛2 + log

∫ 𝜋

0
𝑝𝑛 (𝜃)𝑒𝑑 cos𝜃𝑑𝜃 −

∫ 𝜋
0
𝑝𝑛 (𝜃)𝑒𝑑 cos𝜃𝑑 cos𝜃𝑑𝜃∫ 𝜋
0
𝑝𝑛 (𝜃)𝑒𝑑 cos𝜃𝑑𝜃

≈ log𝑛2 + log

∫ 𝜋
0

sin𝑑−2 𝜃𝑒𝑑 cos𝜃𝑑𝜃∫ 𝜋
0

sin𝑑−2 𝜃𝑑𝜃
− 𝑑

∫ 𝜋
0

sin𝑑−2 𝜃𝑒𝑑 cos𝜃 cos𝜃𝑑𝜃∫ 𝜋
0

sin𝑑−2 𝜃𝑒𝑑 cos𝜃𝑑𝜃
.

(8)

116

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Zhenyu Yang et al.

According to the Laplace approximation [1], small changes be-

tween𝑑 and (𝑑−2) can be ignored when𝑑 is large enough. Formally:

log
[
sin𝑑−2 𝜃𝑒𝑑 cos𝜃

]
= (𝑑−2) log sin𝜃+𝑑 cos𝜃 ≈ 𝑑 (log sin𝜃+cos𝜃) .

(9)

The maximum value of (log sin𝜃 + cos𝜃) is achieved by 𝜃 =

arctan

√√
5+1
2 ≈ 0.905, thus, (log sin𝜃 + cos𝜃) ≈ 0.377 − 1.12(𝜃 −

0.905)2. That is:∫ 𝜋

0
sin𝑑−2 𝜃𝑒𝑑 cos𝜃𝑑𝜃 =

∫ 𝜋

0
𝑒 log

[
sin𝑑−2 𝜃𝑒𝑑 cos𝜃

]
𝑑𝜃

≈
∫ ∞

−∞
𝑒𝑑 [0.377−1.12(𝜃−0.905)

2]𝑑𝜃 ≈
1.676
√
𝑑
𝑒0.377𝑑 .

(10)

∫ 𝜋
0

sin𝑑−2 𝜃𝑒𝑑 cos𝜃 cos𝜃𝑑𝜃∫ 𝜋
0

sin𝑑−2 𝜃𝑒𝑑 cos𝜃𝑑𝜃
≈

∫ ∞
−∞ 𝑒

𝑑 [0.377−1.12(𝜃−0.905)2] cos𝜃𝑑𝜃∫ ∞
−∞ 𝑒

𝑑 [0.377−1.12(𝜃−0.905)2]𝑑𝜃

≈
∫ ∞

−∞
𝛿 (𝜃 − 0.905) cos𝜃𝑑𝜃 = cos 0.905 ≈ 0.618.

(11)

Similarly, a Laplace approximation [1] is used to calculate
∫ 𝜋
0

sin𝑑−2 𝜃𝑑𝜃 ≈ 2.507√
𝑑
. Lastly, the attribute entropy 𝐻𝐴𝑡𝑡 is:

𝐻𝐴𝑡𝑡 ≈ log𝑛2 + log

1.676√
𝑑
𝑒0.377𝑑

2.507√
𝑑

− 0.618𝑑 ≈ log𝑛2 − 0.24𝑑. (12)

3.1.2 Structure entropy. Structure entropy 𝐻𝑆 (A) is defined in

Eq. (1), as reflecting the complexity of the topological information

contained in A. The NDE method includes a novel form of structure

entropy 𝐻𝑆 (A𝑟
1−2−3), that is specifically designed for GNNs, where

the𝐻𝑆 (·) defined in Eq. (1) is used on a normalized adjacencymatrix

A
𝑟
1−2−3 containing multi-order link information. There are four

steps to calculating 𝐻𝑆 (A𝑟
1−2−3) (see Fig. 2). Each step is explained

in detail next along with why we have used A
𝑟
1−2−3 instead of A.

Step 1. Computing theMulti-order AdjacencyMatrices.GNNs

capture multi-order link structures separately in multi-layer convo-

lutional layers. Thus, a multi-order adjacency matrices is used to

calculate structure entropy instead of only a first-order adjacency

matrix A. Given an undirected graph, the first-order adjacency ma-

trix is A. Similar to GNNs, a self-loop is added into A to yield Ã,

i.e., Ã = A + I. The second-order adjacency matrix is Ã2 = Ã
𝑇
Ã,

and the third-order adjacency matrix is regarded as Ã3 = ÃÃ
𝑇
Ã.

Step 2. Applying Graph LaplacianNormalization to theMulti-

order Adjacency Matrices. Inspired by graph Laplacian [14], we

hope to capture the information transmission rate between two

nodes to replace the explicit weight of the edge. The implicit infor-

mation transmission rate establishes a more stable random walk

probability distribution on the graph, so as to calculate the struc-

ture entropy more precisely. Therefore, we employ graph Lapla-

cian to normalize the multi-order adjacent matrices Ã𝑖 , 𝑖 = 1, 2, 3.
The normalized multi-order adjacent matrices A𝑟

𝑖 are defined as

A
𝑟
𝑖 = D̃𝑖

− 1
2 Ã𝑖 D̃𝑖

− 1
2 , where D̃𝑖 indicates the diagonal degree ma-

trix of Ã𝑖 , and A
𝑟
𝑖 [𝑢] [𝑣] represents the information transfer rate

between node 𝑢 and 𝑣 . Next, we multiply D𝑖 with A
𝑟
𝑖 to obtain D

𝑟
𝑖 ,

that is, D𝑟
𝑖 = D𝑖A

𝑟
𝑖 , where each matrix element D𝑟

𝑖 [𝑢] [𝑣] denotes

the amount of information transformation from node 𝑢 to node 𝑣 .
The normalized degree of node 𝑢 is 𝑑𝑟𝑖 [𝑢], where 𝑑

𝑟
𝑖 =

∑
𝑥 D

𝑟
𝑖 [𝑥, :].

Step 3. Fusing the Normalized Multi-order Adjacency Ma-

trices. In most cases, GNN will only set several layers to avoid

over-smoothing. Therefore, in this setting, only the normalized

1-order, 2-order, and 3-order adjacency matrices A𝑟
1, A

𝑟
2, and A

𝑟
3 are

used to compute the structure entropy. However, there is much re-

dundant structural information in A
𝑟
1, A

𝑟
2, and A

𝑟
3. Hence, if we fuse

them, we should yield an adjacency matrix A𝑟
1−2−3 with reduced

redundancy. A𝑟
2 and A

𝑟
3 reflect the second- and third-layered graph

convolutions in the GNNs. In our experiments, we found that the

structure entropy of A𝑟
2 and A

𝑟
3 tended to be larger than A

𝑟
1 since

they represent more complex structural information. Meanwhile,

A
𝑟
2 and A

𝑟
3 bring more redundancy and over-smoothing. Hence, for

a better fusion, we assigned different probabilities to A𝑟
1, A

𝑟
2, and

A
𝑟
3, where the probability of the normalized adjacency matrix under

the order 𝑖 is calculated as:

𝑝𝑖 = 𝑙𝑜𝑔
2 · Δ

|𝐻𝑆 (A𝑟
𝑖) − 𝐻𝑆 (A

𝑟
1) | + Δ

, Δ =
∑
𝑖

|𝐻𝑆 (A𝑟
𝑖) − 𝐻𝑆 (A

𝑟
1) |,

(13)

as shown in the above equation,𝐻𝑆 (·) as defined in Eq. (1) is used to
calculate the structure entropy of A𝑟

𝑖 . However, in a slight variation

on Eq. (1) for NDE, 𝑔𝛼 denotes the summation of D𝑟
𝑖 [𝑢] [𝑣], 𝑢 is

the node not in the subtree rooted at 𝛼 , and 𝑣 is the node in the

partition of subtree rooted at 𝛼 .
Since A

𝑟
1 contain the minimum over-smoothing information,

it is regarded as the basis of the probability calculation process.

The smoothing degree of the higher-order normalized adjacency

matrix (≥ 1) is reflected in the differences between the structure

entropy themselves and A
𝑟
1’s. Therefore, Eq. (13) assigns the lower

probability to the higher-order normalized adjacency matrix (≥ 1)

that is themost smooth. Such an approach to probability assignment

is referred to as Inverse Document Frequency (IDF) [13]. The fusion

adjacency matrix and the corresponding degree set are then defined

as:

A
𝑟
1−2−3 =

3∑
𝑖=1

A
𝑟
𝑖 · 𝑝𝑖 , 𝑑𝑟1−2−3 =

3∑
𝑖=1

𝑑𝑟𝑖 · 𝑝𝑖 . (14)

Step 4. Calculating High-level Structure Entropy. According

to Eq. (14), structure entropy is calculated through:

𝐻𝑆 (A𝑟
1−2−3) . (15)

We used the Python toolkit Louvain [2] to obtain the community

partition and the encoding tree for A𝑟
1−2−3. We chose the Louvain

algorithm because it is fast and performs well [18].

(a) (b) (c)

Directed Edge

Undirected Edge

Figure 3: This figure demonstrates how to transform the

directed edge to the undirected edge.

117

Minimum Entropy Principle Guided Graph Neural Networks WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Graph Convolutional Layers

-dimensional
hidden representations

1-st layer 2-nd layer 3-rd layerGraph 1
Graph 2

Graph 3
Graph 4

d-1
d-2

d-3
d-4

(2)

(4)

Kmeans(K=2)
Graph 2

Graph 3
Graph 4

Graph 1

Kmeans(K=1)eans(K 1()d-1, d-2,
d-3, d-4

Pooling
4-th layer -dimensional

graph representations

-dimensional
graph representations

Graph 1
Graph 2

Graph 3
Graph 4

Pooling

4-th layer

d-i: The appropriate node representation dimension for graph id i:

Candidate set of proper graph representation dimensions
Unified hidden representation dimension

C
lassification R

esults

NDE

Classification
Layer

Figure 4: Taking four graphs as an example, this figure demonstrates how GDE estimates the appropriate graph representation

dimensions for graphs and the new training framework of GNNs for graph classification. Based on NDE and 𝐾-means, the

unified hidden representation dimension estimated by GDE is 𝐶0, and the proper graph representation dimension of Graphs 1

and 2, Graphs 3 and 4 estimated by GDE is 𝐶1 and 𝐶2, respectively. Then, a GNN model represents Graphs 1 and 2 and Graphs 3

and 4 as 𝐶1- dimensional and 𝐶2-dimensional graph representations, respectively, and outputs the classification results.

3.1.3 Minimum entropy & Appropriate Dimension. Based

on Eqs. (2), (12), and (15), the graph entropy of the graph 𝐺 is:

𝐻𝐺 ≈ 𝑙𝑜𝑔𝑛2 − 0.24𝑑 + 𝐻𝑆 (A𝑟
1−2−3), (16)

where 𝑑 denotes the dimensionality of the node embedding and

𝑛 is the number of nodes in the graph 𝐺 . The appropriate node

representation dimension 𝑑 is the one that makes 𝐻𝐺 = 0.

3.2 A Variant: Node Representation Dimension
Estimator for Directed Graphs.

We also built a variant of NDE that can estimate the appropriate

dimensionality of node embeddings for directed graphs. This is

because the idea of using a fused adjacency matrix to do the esti-

mation cannot be directly applied to directed graphs. The reason is

that graph Laplacian operations are only applicable to symmetric

matrices in theory, but the adjacency matrix of a directed graph

is asymmetric. Hence, in this variant of NDE, we must build a

symmetric adjacency matrix for the directed graph, that is:

A𝑠𝑦𝑚 [𝑖, 𝑗] =𝑚𝑎𝑥 (A[𝑖, 𝑗],A[𝑗, 𝑖]), (17)

A𝑜𝑢𝑡 [𝑖, 𝑗] =
∑

𝑢∈N𝑜𝑢𝑡 (𝑖, 𝑗)

A[𝑖, 𝑢] + A[𝑗, 𝑢]∑
𝑣 A[𝑣,𝑢]

, (18)

A𝑖𝑛 [𝑖, 𝑗] =
∑

𝑢∈N𝑖𝑛 (𝑖, 𝑗)

A[𝑢, 𝑖] + A[𝑢, 𝑗]∑
𝑣 A[𝑢, 𝑣]

, (19)

where A is the asymmetric adjacency matrix of the directed graph.

Eq. (17) defines how to build the symmetric adjacency matrix for a

directed graph, as shown in Fig. 3(a). To build a symmetric adjacency

matrix that can encode the direction information in the directed

graph, we also define A𝑜𝑢𝑡 in Eq. (18). A𝑜𝑢𝑡 connects two nodes

that both have the out-degree edge to the same node. The process

is illustrated in Fig. 3(b). Similarly, we can connect two nodes that

both have in-degree edges from the same node in Eq. (19) to obtain

A𝑖𝑛 . The process is shown in Fig. 3(c). Here, N𝑜𝑢𝑡 (𝑖, 𝑗) denotes the
nodes that have in-degree edges from the nodes 𝑖 , 𝑗 while N𝑖𝑛 (𝑖, 𝑗)
denotes the set of nodes that have out-degree edges to nodes 𝑖 , 𝑗 .

The graph Laplacian can then be used to normalize A𝑠𝑦𝑚 , A𝑜𝑢𝑡

and A𝑖𝑛 , and fuse them with probabilities to obtain the fusion adja-

cency matrix of a directed graph. A𝑠𝑦𝑚 is the basis in the fusion

process. Next, in the same way, as we estimate the embedding di-

mensionality with undirected graphs, we can derive the appropriate

dimensionality with a directed graph.

3.3 Graph Representation Dimension Estimator

Most GNNs for graph-level tasks generate graph-level embeddings

by aggregating the embeddings of all the nodes. That is to say,

in these GNNs, node and graph representations share the same

dimensional space. Hence, the appropriate dimensionalities of the

node-level embeddings as estimated by the NDE should also be

valuable for determining the proper dimensionality of a graph-level

embedding. Thus, the GDE assembles a candidate set of dimensions

from the NDE. Then, for each graph, the GDE selects the best-fit

dimensionality from the candidate set.

To assemble the candidate set of dimensions, the NDE method is

applied to each of the graphs {𝐺1, ...,𝐺𝑁 } in the given graph data-

baseG. A vector [𝑑−1, ..., 𝑑−𝑁]
 containing all proper dimensional-

ities for each graph {𝐺1, ...,𝐺𝑁 } is then fed into a 1-D𝐾-means [21]

clustering algorithm, from which 𝐾 clustering centroids, 𝐶1, ...,𝐶𝐾
are derived. The value of 𝐾 is a predefined hyper-parameter, and

{𝐶1, ...,𝐶𝐾 } is the candidate set of proper dimensionalities for the

graph-level embedding.

The GDEmethod also includes a new training framework, specif-

ically designed to support GNNs for graph-level tasks. The method

is, outlined in Fig. 4. In this training framework, all graph con-

volution layers except for the last layer encode the graphs into a

unified dimensionality 𝐶0 for the hidden embedding. This is done

by applying another 1-D K-means to the vector [𝑑 − 1, ..., 𝑑 − 𝑁]

with 𝐾 = 1. In the last convolution layer, the graphs are assigned

with their best-fit dimensionality 𝐶𝑖 , 𝑖 ≥ 1.

To summarize, GDE learns 𝐾 + 1 dimensions (𝐶0; 𝐶1, ..., 𝐶𝐾)
for a graph database, 𝐶0 is the unified dimensionality for the hid-

den embedding, and {𝐶1,𝐶2, ...,𝐶𝑘 } is the candidate set of proper
dimensionality for each graph’s representation.

118

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Zhenyu Yang et al.

Table 1: The performance of the GNNs with supervised graph classification in terms of accuracy (%). Max, Min, and Avg

denote the maximum, minimum, and average performance gain of GNNs resulting from the dimensions estimated by MGEDE

compared to the selecting dimensions heuristically. The best results are highlighted in bold.

Data. ENZYMES D&D

Dim. SOPOOL DGCNN GIN DIFFP GraSAG Dim. SOPOOL DGCNN GIN DIFFP GraSAG

Heur-

istic

16 51.0±4.4 38.6±5.8 42.8±5.0 58.5±4.3 50.8±6.6 48 77.1±5.1 77.8±3.5 76.0±5.3 77.9±2.3 74.7±3.8

32 52.6±6.3 43.1±9.6 43.8±5.1 62.3±2.9 54.7±6.3 64 77.4±5.5 78.1±4.1 77.3±6.2 80.3±3.6 75.3±4.3

48 53.0±6.2 45.8±5.3 45.8±5.4 63.2±8.6 60.0±7.9 80 76.3±4.8 77.9±3.1 76.8±5.3 79.3±3.7 75.1±3.0

64 52.0±6.1 44.9±7.6 45.3±6.1 62.2±4.7 55.7±6.8 96 76.1±4.2 77.6±3.6 76.5±4.1 78.8±3.3 74.6±4.6

80 51.2±9.9 43.8±7.0 44.3±6.7 61.5±4.4 56.4±5.7 112 75.7±4.7 77.4±3.7 76.3±4.9 78.7±4.6 74.5±5.1

96 51.1±5.6 43.6±6.5 43.6±6.8 61.3±4.8 55.1±7.6 128 75.3±5.4 77.4±3.6 75.8±4.4 78.3±3.3 74.0±3.1

MGEDE (42;37,46) 54.0±6.3 47.2±4.9 46.2±6.6 64.1±9.0 60.9±5.1 (66;59,72) 78.1±3.6 78.6±1.9 78.0±2.2 80.7±2.4 75.8±2.9

Max/Min/Avg 3/1/2.2 8.6/1.4/3.9 3.4/0.4/1.9 5.6/0.9/2.6 10.1/0.9/5.45 2.8/0.7/1.8 1.2/0.5/0.9 2.2/0.7/1.6 2.8/0.4/1.8 1.8/0.5/1.1

Data. PROTEINS COLLAB

Dim. SOPOOL DGCNN GIN DIFFP GraSAG Dim. SOPOOL DGCNN GIN DIFFP GraSAG

Heur-

istic

16 74.4±3.9 73.1±5.4 74.7±4.6 75.5±4.3 74.6±4.4 48 74.0±2.2 72.5±2.2 79.2±1.5 73.7±1.6 68.9±2.4

32 74.7±5.5 73.6±4.8 75.2±3.8 76.0±2.3 75.1±4.6 64 74.7±2.7 73.6±2.3 79.9±0.8 75.6±2.1 71.1±2.2

48 74.9±2.5 74.0±4.7 75.3±4.2 76.2±2.8 75.3±5.4 80 74.5±2.1 73.2±1.7 79.6±1.3 74.5±1.3 70.0±1.4

64 75.0±4.5 73.5±4.1 75.1±4.5 75.9±4.2 75.0±3.1 96 74.3±2.2 73.0±2.5 79.5±1.3 73.9±1.5 69.7±1.7

80 74.9±4.1 73.2±5.2 74.6±2.1 75.8±3.3 73.2±3.2 112 74.3±1.6 72.7±1.9 79.3±1.6 73.8±1.9 68.1±1.1

96 73.5±5.0 73.4±4.8 74.3±1.9 75.2±3.3 72.7±2.4 128 74.1±2.0 72.4±1.5 79.2±1.4 73.5±1.6 68.2±2.5

MGEDE (41;35,50) 75.0±4.2 74.4±5.2 75.8±3.0 76.7±3.7 75.9±5.2 (57;53,68) 77.1±1.7 74.6±1.4 80.4±1.2 76.4±1.5 71.1±0.9

Max/Min/Avg 1.5/0.0/0.4 1.3/0.4/0.9 1.5/0.5/0.9 1.5/0.5/0.9 3.2/0.6/1.6 3.1/2.4/2.8 2.2/1/1.7 1.2/0.5/1.0 2.9/0.8/2.2 3.0/0.0/1.8

3.4 Time Complexity Analysis

The time complexity of NDE is mainly composed of the Louvain

algorithm (O(𝑛𝑙𝑜𝑔𝑛)), matrix normalization (O(𝑛2)), and the struc-

ture entropy calculation (O(𝑒 + 𝑛)), where 𝑛 and 𝑒 are the number

of nodes and edges, respectively. Overall, the time complexity of

NDE is O(𝑛2). The time complexity of GDE is O(𝑁 · 𝑛2), where 𝑁
is the number of graphs in the graph database.

4 EXPERIMENTS

In this section, we report the outcomes of an extensive set of ex-

periments with nine benchmark datasets. The experiments were

designed to test the effectiveness of the dimensionalities estimated

by MGEDE with both node and graph classification tasks.

4.1 Experiment Setup

Datasets. For the graph classification task, we used three biological

datasets (i.e., ENZYMES [3], PROTEINS [3], D&D [6]) and a social

network dataset (i.e., COLLAB [45]). There were 6, 2, 2, and 3 classes

in the four datasets, respectively. With the node classification tasks,

we use three undirected graphs (i.e., Cora [30], Citeseer [30], and

Pubmed [27]) and three directed graphs (i.e., Cora-ML [32], Directed

Citeseer (Di-Citeseer) [30], and AM-Computer [24]). They have 7,

6, 3, 7, 6 and 10 classes, respectively.

Models. We evaluated the MGEDE’s performance in terms of how

the estimated dimensionalities were with three types of popular

GNNs and network embedding algorithms, including a). GNNs

for supervised graph classification (i.e., GIN [44], SOPOOL [42],

DGCNN [50], GraSAG [8] and DIFFP [48]); b). GNNs for semi-

supervised node classification on undirected graphs (GEN [40],

GCN [14], GAT [39], andDAGNN [19]); c).GNNs for semi-supervised

node classification on directed graphs (DiGCN [38], and DiGCL

[37]); and d). Unsupervised network embedding algorithms (DANE

[7] and CAN [25]). To the best of our knowledge, MinGE [20] is the

only framework that can estimate the suitable number of dimen-

sions for node-level embeddings with undirected graphs. Therefore,

we take the grid-search-based heuristic method and MinGE as the

node-level comparison methods with undirected graphs. There are

no current methods estimating embedding dimensions for node-

level embedding with directed graphs and graph-level embedding.

Hence, for these two tasks, we could only use the grid-search-based

heuristic method as the comparison method.

EvaluationMetrics.We used accuracy as our evaluationmetric for

supervised graph classification and semi-supervised node classifica-

tion. This is because these two tasks are relatively balanced in the

experimental setting with this paper, and accuracy is a widely used

evaluation metric [8, 42, 44, 48, 50]. For the unsupervised network

embedding, following previous studies [7, 25], we adopted Micro-

F1 and Macro-F1 as the evaluation metrics. All the experimental

results reported are from 10-fold cross-validations.

Experimental Setting. MGEDE has only one hyper-parameter,

being 𝐾 , and it only applies to graph classification tasks. 𝐾 controls

the size of the candidate set of proper dimensionalities for graph

embeddings. In our experiments, we set 𝐾 = 2.

4.2 Performance of GNNs on Supervised Graph
Classification

Tab. 1 illustrates the performance of the GNNs and algorithms with

supervised graph classification tasks. Here, the heuristic method

is compared with MGEDE. In terms of maximum (max), minimum

(min), and average (avg) performance gain. From the results for

minimum performance gain, we can see that MGEDE performed

competitively on all datasets. These results verify that MGEDE can

support practitioners in their use of GNNs for graph classification

tasks.

119

Minimum Entropy Principle Guided Graph Neural Networks WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Table 2: The performance of GNNs on semi-supervised node classification on undirected graphs in terms of accuracy (%).

Data. Cora Citeseer Pubmed

Dim. GEN GCN GAT DAGNN Dim. GEN GCN GAT DAGNN Dim. GEN GCN GAT DAGNN

Heur-

istic

16 81.6±0.3 81.0±0.9 83.0±0.3 84.2±0.5 16 73.0±0.4 70.1±0.7 71.8±0.4 72.9±0.7 48 79.2±0.4 78.6±0.3 78.3±0.4 80.0±0.5

32 81.5±0.4 81.1±0.4 83.5±0.3 84.2±0.5 32 73.1±0.5 70.0±0.6 72.0±0.4 73.0±0.6 64 79.3±0.6 78.7±0.2 78.8±0.5 80.1±0.4

48 81.8±0.3 81.1±0.4 83.8±0.4 84.3±0.5 48 73.3±0.9 70.2±0.3 72.1±0.5 73.1±0.5 80 79.5±0.5 78.9±0.3 79.2±0.4 80.2±0.4

64 81.8±0.5 81.2±0.6 84.1±0.4 84.4±0.5 64 73.6±0.4 70.3±0.4 72.3±0.5 73.1±0.6 96 79.8±0.4 78.9±0.3 79.3±0.3 80.2±0.5

80 81.9±0.1 81.3±0.3 84.3±0.4 84.5±0.4 80 73.7±0.4 70.4±0.4 72.3±0.3 73.2±0.5 112 80.2±0.4 79.0±0.3 79.4±0.5 80.3±0.4

96 82.1±0.2 81.4±0.3 84.5±0.5 84.6±0.5 96 73.9±0.3 70.6±0.5 72.4±0.3 73.3±0.5 128 80.7±0.3 79.2±0.5 79.5±0.4 80.4±0.4

112 81.4±0.2 81.3±0.5 84.2±0.3 84.3±0.5 112 73.6±0.5 70.4±0.8 72.2±0.3 73.2±0.5 144 80.4±0.5 78.9±0.2 79.3±0.4 80.2±0.5

128 81.5±0.2 81.2±0.4 83.9±0.4 84.1±0.6 128 73.4±0.5 70.5±0.4 72.0±0.5 73.1±0.5 160 80.3±0.3 78.8±0.3 79.0±0.5 80.2±0.4

144 81.0±0.4 81.1±0.5 84.0±0.3 84.1±0.6 144 73.4±0.4 70.1±0.6 71.7±0.4 73.1±0.6 176 80.1±0.4 78.7±0.3 78.9±0.2 80.1±0.4

160 80.9±0.1 81.2±0.4 83.7±0.4 84.0±0.5 160 73.2±0.9 70.0±0.5 71.5±0.3 72.8±0.7 192 80.2±0.5 78.7±0.2 78.6±0.3 80.2±0.5

MinGE 98 82.4±0.3 81.4±0.4 84.5±0.4 84.7±0.6 101 73.8±0.3 70.6±0.4 72.3±0.4 73.4±0.5 123 80.6±0.3 79.2±0.4 79.4±0.4 80.3±0.4

MGEDE 101 82.6±0.4 81.6±0.5 84.6±0.3 84.9±0.5 99 74.1±0.4 70.7±0.5 72.5±0.3 73.5±0.5 130 81.0±0.4 79.4±0.3 79.7±0.3 80.6±0.3

Max/Min/Avg 1.7/0.2/1.0 0.6/0.2/0.4 1.6/0.1/0.6 0.9/0.2/0.6 1.1/0.2/0.6 0.7/0.1/0.4 1.0/0.1/0.4 0.7/0.1/0.4 1.8/0.3/1.0 0.8/0.2/0.5 1.4/0.2/0.6 0.6/0.2/0.4

Table 3: The performance of GNNs on semi-supervised node classification on directed graphs in terms of accuracy (%).

Data. Cora-ML Di-Citeseer AM-Computer

Dim. GCN DiGCN DiGCL Dim. GCN DiGCN DiGCL Dim. GCN DiGCN DiGCL

Heur-

istic

16 70.2±0.6 76.5±0.1 72.6±2.1 16 62.6±0.8 63.0±0.2 61.3±1.7 48 82.4±0.6 84.5±0.6 66.9±1.7

32 70.4±0.3 76.6±0.5 75.3±1.3 32 62.8±0.4 64.3±0.6 62.0±1.4 64 82.9±0.5 85.3±0.2 67.6±1.3

48 70.5±0.4 76.9±0.4 75.7±1.8 48 62.9±0.3 64.5±0.6 64.2±1.8 80 82.9±0.7 85.3±0.3 68.5±1.3

64 70.7±0.3 77.0±0.4 76.7±1.3 64 62.9±0.4 64.6±0.5 66.2±1.8 96 83.0±0.4 85.4±0.3 71.2±1.8

80 70.9±0.3 77.0±0.4 77.1±1.4 80 63.0±0.3 64.7±0.4 66.5±1.4 112 83.1±0.6 85.5±0.3 72.5±2.1

96 71.1±0.3 77.1±0.3 77.5±1.1 96 63.1±0.4 64.8±0.5 66.1±1.4 128 83.4±0.5 85.8±0.3 73.2±2.2

112 71.0±0.3 77.0±0.3 77.3±1.2 112 62.8±0.4 64.7±0.5 61.8±1.3 144 83.0±0.5 85.6±0.3 67.6±1.7

128 70.8±0.2 76.9±0.4 76.7±2.1 128 62.9±0.4 64.5±0.4 60.9±0.7 160 82.9±0.3 85.5±0.3 65.7±2.0

144 70.9±0.2 76.7±0.3 76.7±1.7 144 62.7±0.5 64.6±0.8 60.2±1.9 176 82.6±0.5 85.4±0.2 62.6±2.0

160 70.7±0.2 76.6±0.4 75.6±1.1 160 62.4±0.3 64.4±0.5 57.8±0.8 192 82.2±0.5 84.8±0.3 60.5±2.1

MGEDE 101 71.3±0.3 77.3±0.4 77.8±1.2 91 63.2±0.3 64.9±0.5 66.8±1.1 128 83.4±0.5 85.8±0.3 73.2±2.2

Max/Min/Avg 1.1/0.2/0.6 0.8/0.2/0.5 5.2/0.3/1.7 0.8/0.1/0.4 1.9/0.1/0.5 9/0.3/4.1 1.2/0/0.6 1.3/0/0.5 12.7/0/5.6

4.3 Performance of GNNs on Semi-supervised
Node Classification

Tab. 2 provides the results with a semi-supervised node classifica-

tion task on undirected graphs. MGEDE helps the GNNs to deliver

promising performance on all undirected graphs with an average

of 0.4% greater accuracy. Tab. 3 reports the results with directed

graphs. Likewise, on all directed graphs, the GNNs were more accu-

rate when using the number of dimensions estimated by MGEDE.

4.4 Performance on Unsupervised Network
Embedding

Tab. 4 shows the performance of the two network embedding mod-

els DANE and CAN. With a node classification task, in this exper-

iment, MGEDE helped the two models reach competitive perfor-

mance in terms of Micro-F1 and Macro-F1 scores.

4.5 Time Efficiency Analysis

Beyond improving the classification accuracy of GNNs, one of

MGEDE’s is that it saves practitioners time. First, it estimates the

proper number of dimensions for graph embeddings in a much

shorter time than a grid search method would take. Second, the

GNNs themselves operate at a higher running efficiency because the

dimensions chosen for the embeddings are appropriate. As shown

in Tab. 5 and Fig. 5, MGEDE took 1347 seconds (22.45 minutes)

to estimate the proper number of dimensionalities for the graph-

level embeddings for the COLLAB dataset. The grid search method

Table 4: The performance of unsupervised network embed-

ding in terms of Micro-F1 and Macro-F1.

Data. Cora Pubmed

Dim.
DANE CAN

Dim.
DANE CAN

Ma_F1 Mi_F1 Ma_F1 Mi_F1 Ma_F1 Mi_F1 Ma_F1 Mi_F1

Heur-

istic

16 0.780 0.805 0.795 0.816 48 0.827 0.828 0.833 0.836

32 0.804 0.817 0.853 0.866 64 0.835 0.834 0.834 0.842

48 0.810 0.823 0.857 0.870 80 0.839 0.840 0.834 0.845

64 0.813 0.827 0.859 0.871 96 0.841 0.840 0.837 0.845

80 0.816 0.832 0.861 0.873 112 0.842 0.844 0.838 0.846

96 0.824 0.834 0.862 0.876 128 0.847 0.846 0.842 0.848

112 0.818 0.834 0.866 0.876 144 0.846 0.845 0.839 0.844

128 0.816 0.831 0.863 0.875 160 0.845 0.843 0.786 0.789

144 0.809 0.826 0.864 0.870 176 0.843 0.840 0.765 0.770

160 0.804 0.824 0.860 0.867 192 0.841 0.837 0.766 0.765

MinGE 98 0.826 0.837 0.865 0.877 123 0.844 0.845 0.840 0.848

MGEDE 101 0.828 0.842 0.869 0.881 130 0.849 0.848 0.843 0.850

Max 0.048 0.037 0.074 0.065 0.022 0.020 0.078 0.085

Min 0.002 0.005 0.003 0.004 0.002 0.002 0.001 0.002

Avg 0.017 0.016 0.014 0.014 0.008 0.008 0.024 0.025

Table 5: Times taken for MGEDE to estimate the proper num-

ber of dimensions for graph-level embeddings with four

graph databases.

Data. ENZYMES PROTEINS D&D COLLAB

Graphs 600 1113 1178 5000

AvgNode 32.6 39.1 284.3 74.49

AvgEdge 62.1 72.8 715.6 2457.7

Time(s) 13 26 373 1347

120

WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Zhenyu Yang et al.

ENZYMES PROTEINS D&D COLLAB

Figure 5: Running time(s) of GNNs with the best grid search dimension and the appropriate dimensions estimated by MGEDE.

Table 6: Graph classification accuracy with different value of the hyper-parameter 𝐾 .

Dataset ENZYMES D&D

𝐾 2 3 4 5 6 2 3 4 5 6

Dims. 37,46 33,41,48 31,39,44,49 24,34,40,45,50 24,34,40,44,48,54 59,72 57,66,75 54,62,69,77 52,59,65,71,78 52,59,64,69,74,81

SOPOOL 54.0±6.3 33.3±6.8 30.4±4.5 27.7±4.2 27.2±5.7 78.1±3.6 76.3±4.1 74.8±3.9 75.1±4.0 75.0±3.7

Dataset PROTEINS COLLAB

𝐾 2 3 4 5 6 2 3 4 5 6

Dims. 35,50 30,41,55 28,38,47,58 27,36,43,51,61 25,33,39,46,54,63 53,68 52,62,78 51,57,65,80 50,55,60,67,80 49,53,57,62,68,80

SOPOOL 75.0±4.2 74.8±2.7 74.8±3.6 73.6±3.1 73.3±3.0 77.1±1.7 74.7±1.9 74.7±2.1 74.5±2.4 74.2±2.1

needed to parse the GNNs many times with each parse taking over

10000 seconds (2.8 hours). Further, as shown in Fig. 5, the blue bar

denotes the running time of each GNN with the best grid search

dimensions while the orange bar demonstrates the running times of

the GNNs with dimensions estimated by MGEDE. It is clear that the

running times for MGEDE were faster on almost all graph datasets.

4.6 Hyper-parameter Analysis

Using SOPOOL for a graph classification task, we undertook a sensi-

tivity study of the hyper-parameter 𝐾 as shown in Tab. 6. SOPOOL

delivered the best performance on all graph datasets when 𝐾 = 2,

and its performance witnessed a steady decrease as 𝐾 increased.

One possible reason for this is that a larger 𝐾 may lead the GNNs

to overfit, especially with small-sized datasets, such as ENZYMES.

5 RELATEDWORK

This literature review surveys work related to entropy and dimen-

sion estimation.

Entropy. A representative way to measure a system’s uncertainty

is Shannon’s entropy [31], which regards entropy as the distribution

of basic unit events. Therefore, defining basic unit events is critical

for calculating Shannon’s entropy. Numerous researchers have tried

to find a reasonable basic unit for events on graphs. Dehmer [5]

defined the basic unit event in a graph by transforming the node

into a positive integer. The structure encoding tree [15, 46] captures

the entropy of the graph structure information. Recently, there has

also been some work on defining entropy with text data. Term

Frequency —Inverse Document Frequency [13] takes the frequency

of words in corpus and the inverse document frequency of this

word as the basic unit. Su’s [35] idea is that the inner product of

two-word embeddings could be regarded as the basic unit.

Dimension Estimation. There are some algorithms that estimate

the proper dimensionality through a metric —for example, with a

loss function that evaluates different numbers of dimensions. Yin

and Shen [47] defined the pairwise inner product as a loss function

for estimating dimension. Their work focuses on measuring the

change in bias and variance resulting from different dimensionali-

ties. The dimension option that provides the most balanced bias and

variance is then selected as the best choice. Inspired by this work,

Wang [41] presented a score function to gauge performance with

different numbers of dimensions, ranging from 2 to a predefined

maximum number. Su [35] built an association between entropy

and the dimensions of the embeddings based on the semantic distri-

bution hypothesis [29]. Also motivated by the semantic distribution

hypothesis, Luo et al. [20] proposed a dimension estimation method

for node-level embeddings.

6 CONCLUSION

In this paper, we proposed a novel node and graph representa-

tion dimension estimation framework called MGEDE, designed to

support GNNs produce embeddings for downstream tasks. Based

on the minimum entropy principle, we presented a new method

of calculating graph entropy. Composed of attribute entropy and

structure entropy, these novel measures can be used to estimate the

uncertainty in a graph. Additionally, the framework automatically

chooses the appropriate dimensionality for node- and graph-level

embeddings, with the choice being the one that minimizes the

uncertainty in the graph. Moreover, we also devised a new GNN

training architecture that can encode graphs into different dimen-

sion spaces. Extensive experiments demonstrate the effectiveness

of MGEDE in guiding GNNs on both node- and graph-level tasks.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council (ARC)

Projects Nos. DE200100964, LP210301259, and DP230100899. J. Wu

and H. Peng are the corresponding authors.

121

Minimum Entropy Principle Guided Graph Neural Networks WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

REFERENCES
[1] Adriano Azevedo-Filho and Ross D Shachter. 1994. Laplace’s Method Approxima-

tions for Probabilistic Inference in Belief Networks with Continuous Variables.
In Uncertainty Proc. 1994. 28–36.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast Unfolding of Communities in Large Networks. J STAT MECH-
THEORY E (2008), 10008–10021.

[3] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. Protein Function Prediction via
Graph Kernels. Bioinformatics (2005), 47–56.

[4] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proc. KDD. 257–266.

[5] Matthias Dehmer. 2008. Information Processing in Complex Networks: Graph
Entropy and Information Functionals. Appl. Math. Comput. (2008), 82–94.

[6] Paul D Dobson and Andrew J Doig. 2003. Distinguishing Enzyme Structures
from Non-enzymes Without Alignments. J. Mol. Biol. (2003), 771–783.

[7] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..
In Proc. IJCAL. 3364–3370.

[8] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proc. NeurIPS. 1025–1035.

[9] David W. Henderson and Eduarda Moura. 1995. Experiencing Geometry: On
Plane and Sphere. P.H., 1–193.

[10] Pham Thuc Hung and Kenji Yamanishi. 2021. Word2vec Skip-gram Dimensional-
ity Selection via Sequential Normalized Maximum Likelihood. Entropy (2021),
997–1010.

[11] Edwin T Jaynes. 1980. The Minimum Entropy Production Principle. Annu. Rev.
Phys. Chem. (1980), 579–601.

[12] Junteng Jia and Austion R. Benson. 2020. Residual Correlation in Graph Neural
Network Regression. In Proc. KDD. 588–598.

[13] Karen Sparck Jones. 1972. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. J Doc (1972), 11–21.

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. ICLR. 1–14.

[15] Angsheng Li and Yicheng Pan. 2016. Structural Information and Dynamical
Complexity of Networks. IEEE TIT (2016), 3290–3339.

[16] Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu, Yiming Hei, Hao Peng, Shu
Guo, Lihong Wang, Amin Beheshti, and Philip S. Yu. 2022. A Survey on Deep
Learning Event Extraction: Approaches and Applications. IEEE TNNLS (2022),
1–21.

[17] Chuang Liu, Jia Wu, Weiwei Liu, and Wenbin Hu. 2021. Enhancing Graph Neural
Networks by A High-quality Aggregation of Beneficial Information. Neural Netw.
(2021), 20–33.

[18] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Jian Yang, and Philip S Yu. 2020. Deep Learning for Community Detection:
Progress, Challenges and Opportunities. In Proc. IJCAL. 4981–4987.

[19] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural
Networks. In Proc. KDD. 338–348.

[20] Gongxu Luo, Jianxin Li, Jianlin Su, Hao Peng, Carl Yang, Lichao Sun, Philip S
Yu, and Lifang He. 2021. Graph Entropy Guided Node Embedding Dimension
Selection for Graph Neural Networks. arXiv:2105.03178 (2021).

[21] James MacQueen et al. 1967. Some Methods for Classification and Analysis of
Multivariate Observations. In Proc. BSMSP. 281–297.

[22] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. 2019.
Provably Powerful Graph Networks. In Proc. NeurIPS. 1–12.

[23] Avner May, Jian Zhang, Tri Dao, and Christopher Ré. 2019. On the Downstream
Performance of Compressed Word Embeddings. In Proc. NeurIPS. 1–12.

[24] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based Recommendations on Styles and Substitutes. In Proc. SIGIR.
43–52.

[25] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019.
Co-embedding Attributed Networks. In Proc. WSDM. 393–401.

[26] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go
Neural: Higher-order Graph Neural Networks. In Proc. AAAI. 4602–4609.

[27] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. 2012. Query-
driven Active Surveying for Collective Classification. In Proc. MLG-KDD. 1–8.

[28] Robert Peach, Alexis Arnaudon, and Mauricio Barahona. 2022. Relative, Local
and Global Dimension in Complex Networks. Nature Communications 13, 1
(2022), 1–11.

[29] Magnus Sahlgren. 2008. The Distributional Hypothesis. Ital. J. Disabil. Stud.
(2008), 33–53.

[30] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. (2008),
1–14.

[31] Claude Shannon. 1953. The Lattice Theory of Information. Transactions of the
IRE professional Group on Information Theory (1953), 105–107.

[32] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. In Proc. RRL-
NeurIPS. 1–11.

[33] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae,
Zohar Bloom-Ackermann, et al. 2020. A Deep Learning Approach to Antibiotic
Discovery. Cell 180, 4 (2020), 688–702.

[34] Jianlin Su. 2019. Angle Distribution of Two Random Vectors in n-dimensional
Space. [EB/OL]. https://kexue.fm/archives/7076.

[35] Jianlin Su. 2020. How to Choose the Dimension of Word Embedding. [EB/OL].
https://kexue.fm/archives/7695.

[36] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu,
Cecile Paris, Surya Nepal, Di Jin, et al. 2022. A Comprehensive Survey on
Community Detection with Deep Learning. IEEE TNNLS (2022), 1–21.

[37] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu
Wang. 2021. Directed Graph Contrastive Learning. In Proc. NeurIPS. 19580–19593.

[38] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and
Andrew Lim. 2020. Digraph Inception Convolutional Networks. In Proc. NeurIPS.
17907–17918.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. ICLR. 1–12.

[40] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and
Xing Xie. 2021. Graph Structure Estimation Neural Networks. In Proc. WWW.
342–353.

[41] Yu Wang. 2019. Single Training Dimension Selection for Word Embedding with
PCA. In Proc. EMNLP-IJCNLP. 3597–3602.

[42] ZhengyangWang and Shuiwang Ji. 2020. Second-Order Pooling for Graph Neural
Networks. IEEE TPAMI (2020), 1–12.

[43] Libing Wu, Min Wang, Dan Wu, and Jia Wu. 2021. DynSTGAT: Dynamic Spatial-
Temporal Graph Attention Network for Traffic Signal Control. In Proc. CIKM.
2150–2159.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In Proc. ICLR. 1–17.

[45] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep Graph Kernels. In Proc.
KDD. 1365–1374.

[46] Runze Yang, Hao Peng, and Angsheng Li. 2022. Dynamic Measurement of
Structural Entropy for Dynamic Graphs. arXiv preprint arXiv:2207.12653 (2022).

[47] Zi Yin and Yuanyuan Shen. 2018. On the Dimensionality of Word Embedding. In
Proc. NeurIPS. 1–12.

[48] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical Graph Representation Learning with Differentiable
Pooling. In Proc. NeurIPS. 1–11.

[49] Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Xue Shan, Hao Peng, Jianlin Su,
Chuan Zhou, Quan Z Sheng, Leman Akoglu, and Charu C Aggarwal. 2022. Dual-
discriminative Graph Neural Network for Imbalanced Graph-level Anomaly
Detection. In Proc. NeurIPS. 1–12.

[50] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
End-to-End Deep Learning Architecture for Graph Classification. In Proc. AAAI.
1–8.

[51] Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu,
Jia Wu, Xin Wang, Wenwu Zhu, and Martin Ester. 2022. A Comprehensive
Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions. CoRR
abs/2206.07579 (2022).

122

